Technology with unequal gains: Steamship and globalization

Shotaro Beppu

EPIC (E&E Lab) University of Chicago

December 26, 2023 @ CREPE

- What was the effect of steamships on development?
- Digitize shipping data using deep learning
- Unequal gains using the market access approach
- Extend trade with heterogeneous firms to understand this difference in gains

Outline

- 1. Why Steamships?
- 2. Data and Digitization
- 3. Empirical Evidence on Unequal Gains
- 4. Adoption of Steamships: Theory
- 5. Adoption of Steamships: Estimation

Technology and Integration

What if

- the world became more integrated?
- the technology to integrate was not available to all?

Why unequal gains from integration?

• Generally positive gains from trade

(Donaldson, 2015) (Redding & Venables, 2004) (Donaldson & Hornbeck, 2016) (Bernhofen et al., 2016)

- Difference in gains due to transportation (Pascali, 2017) (Faber, 2014) (Campante & Yanagizawa-Drott, 2018) (Okoye et al., 2019)
- How does transportation technology relate to differences in gains?
- Relates to whether technology worsens inequality (Reichardt, 2023) (Goldin & Katz, 1998) (Acemoglu & Autor, 2011)

Steamships as an ideal case study

- Huge changes in the late 19th century (1880-1914)
 - The First Era of Globalization
 - The Great Divergence
 - Transition from sailing to steamships (natural experiment)
- Null average effect of trade (Pascali, 2017)
- Why?
 - Transportation technology is not adopted uniformly?
 - Possible to see who actually used steamships!

The paper

- Digitize historical documents using deep learning
 - Shipping data to see who used steamships
 - Provide precise measurement in changes in duration
- Evidence of gains from the transportation technology
 - Large gains due to access to large consumer markets
 - Smaller gains from access to large suppliers
 - Negative effects for colonized countries
- Provides a framework to think about trade and technology
 - (Melitz, 2003)
 - Incorporate sailing and steamships
 - Show differences in welfare

Data and Digitization

Overview

- Country-level (Pascali, 2017)
- Port-level (Lloyd's Shipping Index)

Country level

For 1880-1900 (Pascali, 2017)

- Country-level trade volumes (in US pounds)
- Country-level GDP, population, institution

Port level

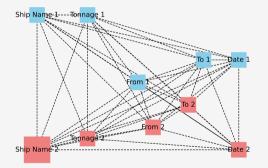
• Lloyd's Shipping Index

Used in (Juhász & Steinwender, 2018) (Xu, 2022)

- Comprehensive data set on global shipping from 1880
 - · Weekly reports compiled by the insurance company Lloyd's
 - Ships travelling from port to port

Reg. Snip Master Ton. Flag RigFromForLatest ReportsR v E A O'BrienPratt(1038)Br bqManilla Apr 4BostonArSept10—ForBueuosAyresR v E B SuttonCarter(1639)Am sHonolulu Oct 13New York* R ECMowattHersey(1026)Am bqPhiladelphia Sept6 Table BayPd Marcus Hook Sept 6* E JSpence Stronach(519)Br bqSingapore July 26MauritiusAr Sept 12v E J SpicerCochran(1268)Br sTable Bay July 21Ncstle(NSW)Ar Spt2—ForWSCAmerica

Deep Learning in Digitization

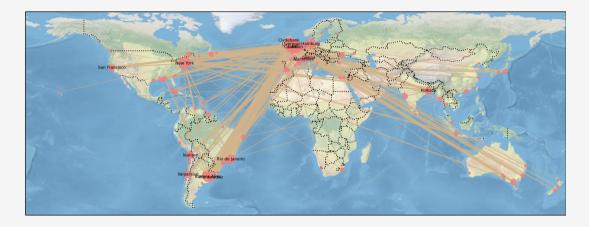

Recognize from images

- Texts (Optical Character Recognition)
 - LayoutParser (Shen et al., 2021)
- Tables (Table Structure Recognition)
 - Difficult even in contemporary documents
 - Bottleneck in other digitization efforts

RVA	stral Dunham (2987) Am s tacama Gundersen	New York Apr 15 San FraciscoSpMay20,17S3SW-All well			
1.22.4	(1113) No bq talanta Stendahl	Boston June 13	BuenosAyros		
	(998) No Lg	Launceston May11	Maldenla& Bluff		
* At	thene Dreier (2360) Ge bq tlantig Rasmussen	Port Talbot Jan25		Ar Apr 16-In pt June 27	
	(271) Da so	Hamburg	Sundswall	Ar June 15	

Idea and Algorithm

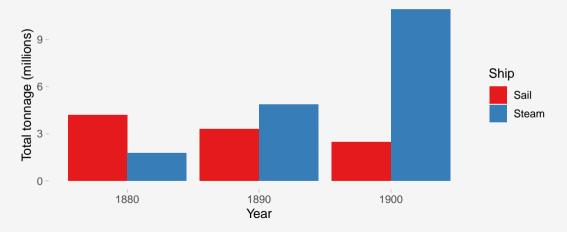
Predict each connection of words

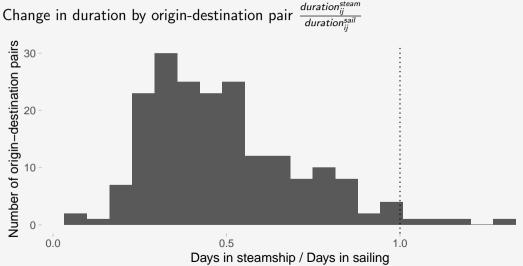

- Text information
 - Google OCR
 - BERT (Large Language Model)
- Connections
 - Graph Neural Network

Lloyd's Shipping Index 1.0

Extract 30,000 trips across the years 1880, 1890, and 1900

- Port to port by sailing and steamships
 - Total tonnage (tons)
 - Duration (days)
- Caveat
 - Reporting bias (skewed towards ships in Europe)
 - Digitization Error (skewed towards common ship trips)


Shipping Network


Empirical Evidence

Steamships vs Sailing

The adoption of steamships in the late 19th century

Faster

Empirical framework

 $\Delta GDP \ Per \ Capita_c = \beta_0 + \beta_1 \Delta Market \ Access_c + \beta_2 \Delta Supplier \ Access_c + \nu_c$ (1)

$$\begin{aligned} & \textit{Market Access}_{i,t} = \sum_{j} \textit{duration}_{ij,t}^{-1} \textit{ population}_{j,t} \end{aligned} \tag{2} \\ & \textit{Supplier Access}_{i,t} = \sum_{j} \textit{duration}_{ji,t}^{-1} \textit{ population}_{j,t} \end{aligned} \tag{3}$$

- 1880 ... Duration of sailing ships
- 1890 ... Weighted duration of sailing and steamships
- 1900 ... Duration of steamships

Average positive effect of steamships

Dependent Variable:	$\Delta GDP percapita$			
Model:	(1)	(2)	(3)	
Variables				
$\Delta MarketAccess$	0.061***		0.103***	
	(0.012)		(0.024)	
$\Delta SupplierAccess$		0.064***	-0.066*	
		(0.023)	(0.035)	
Fixed-effects				
Year	Yes	Yes	Yes	
Fit statistics				
R ²	0.465	0.236	0.448	
Observations	59	59	58	

Clustered (Country) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

- Export market increases wage
- Import market increases real wage
- Import market increases competition

Negative effect on colonized countries

Dependent Variable:	ΔGDP percapita		
Model:	(1)	(2)	
Variables			
Δ MarketAccess	0.062***		
	(0.015)		
Colony	-0.122***	-0.097***	
	(0.037)	(0.028)	
Δ <i>MarketAccess</i> $ imes$ Colony	-0.087***		
A Sumpliar A same	(0.030)	0 001***	
$\Delta SupplierAccess$		0.091*** (0.028)	
$\Delta SupplierAccess imes$ Colony		-0.123***	
		(0.036)	
		(0.000)	
Fixed-effects			
Year	Yes	Yes	
Fit statistics			
R ²	0.528	0.404	
Observations	59	59	

Low steamships adoption at the port level

Dependent Variables: Model:	Only sailing (1)	Only steam (2)	Share steam (3)
Variables			
Constant	0.649***	0.067***	0.177***
	(0.025)	(0.021)	(0.021)
Year 1900	-0.379***	0.279***	0.424***
	(0.032)	(0.028)	(0.027)
Year 1880 $ imes$ Colony	0.050	0.010	-0.030
	(0.052)	(0.045)	(0.043)
Year 1900 $ imes$ Colony	0.173***	-0.082**	-0.133***
	(0.044)	(0.038)	(0.037)
Fit statistics			
R^2	0.135	0.097	0.217
Observations	1,096	1,096	1,096

IID standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Steamships increasing inequality

- Steamships provided faster transportation
- This increased integration did not benefit colonized countries
- The low adoption of steamships as a possible explanation

Adoption of Steamships: Theory

Motivation

Can standard trade theory explain this?

- Difference in fixed cost of adoption
 - Port investment
- Shipping sector in the trade cost
- Outside trade (e.g. institutions)

Overview

- Trade with heterogeneous firms (Melitz, 2003)
- Include differences in shipping technology
 - duration
 - adoption cost
- Welfare difference between countries differing in adoption rate

Set up

- Set of countries S
- Exogenous measure L_i of workers in $i \in S$ supply unit labour at wage w_i
- Representative consumer has CES preferences over varieties from all firms

$$U_j = \left(\sum_{i\in \mathcal{S}} \int_{\Omega_{ij}} (q_{ij}(\omega))^{rac{\sigma}{\sigma-1}} d\omega
ight)^{rac{\sigma-\sigma}{\sigma}}$$

• Demand of good $\omega \in \Omega$

$$egin{aligned} q_{ij}(\omega) &= p_{ij}(\omega)^{-\sigma} Y_j P_j^{\sigma-1} \ P_j &= \left(\sum_{i\in \mathcal{S}} \int_{\Omega_i} p_{ij}(\omega)^{1-\sigma} d\omega
ight)^{rac{1}{1-\sigma}} \end{aligned}$$

 Y_j ... income of country j

Firm's decision

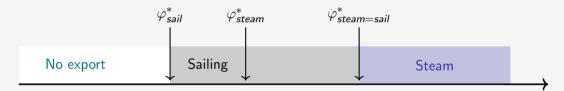
- Every firm in the world produces a distinct variety $\omega\in\Omega$
- A firm uses $\frac{1}{\varphi}$ unit of labour to produce a unit of its variety, drawn from $G_i(\varphi)$.
- Conditional on selling to j, subject to iceberg trade cost $\{\tau_{ij}\}_{i,j\in S}$

$$p_{ij}(\varphi) = \frac{\sigma}{\sigma - 1} \frac{w_i}{\varphi} \tau_{ij}$$
$$x_{ij}(\varphi) = \left(\frac{\sigma}{\sigma - 1} \frac{w_i}{\varphi} \tau_{ij}\right)^{1 - \sigma} Y_j P_j^{\sigma - 1}$$

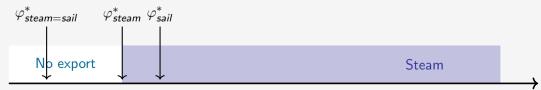
Which firm uses steamships?

- A ship type $s \in \{sail, steam\}$ has different τ_{ij}^{s} and f_{ij}^{s} , fixed cost to export to j
- The profit of a firm with productivity φ using ship ${\it s}$ is

$$\pi_{ij}^{s}(\varphi) = \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \frac{w_{i}}{\varphi} \tau_{ij}^{s} \right)^{1 - \sigma} Y_{j} P_{j}^{\sigma - 1} - f_{ij}^{s}$$


• Cutoff productivity for exporting using sailing or steamships

$$\begin{split} \varphi_{ij,sail}^* &= \left(\frac{\sigma f_{ij}^{sail} \left(\frac{\sigma}{\sigma-1} W_i \tau_{ij}^{sail}\right)^{\sigma-1}}{Y_j P_j^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} \\ \varphi_{ij,steam}^* &= \varphi_{ij,sail}^* \left(\left(f_{ij}^{steam} / f_{ij}^{sail}\right) \left(\tau_{ij}^{steam} / \tau_{ij}^{sail}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}} \\ \varphi_{ij,steam=sail}^* &= \varphi_{ij,sail}^* \left(\frac{\left(f_{ij}^{steam} / f_{ij}^{sail}\right) - 1}{\left(\tau_{ij}^{steam} / \tau_{ij}^{sail}\right)^{1-\sigma} - 1} \right)^{\frac{1}{\sigma-1}} \end{split}$$


Difference in adoption

When using steamship is harder to export: $\varphi^*_{\textit{sail}} \leq \varphi^*_{\textit{steam}}$

Figure: Export and ship used when cost of using steamship is high

When using steamship is easier to export: $\varphi^*_{\textit{sail}} > \varphi^*_{\textit{steam}}$

Welfare

- Entry cost to the domestic market (Cutoff productivity φ^* for producing)
- Expected profits must be equal to the fixed cost of entry
- Set wage as the numeraire
- Welfare is described by the price index

Fixed cost and Welfare

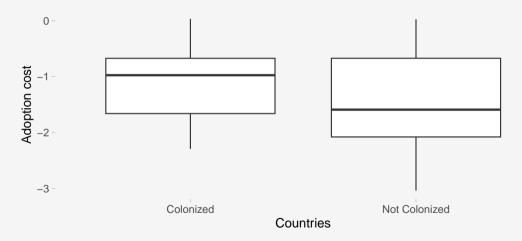
Under the assumptions of (1) symmetric countries and (2) productivity is Pareto distributed with shape parameter $\theta > \sigma - 1$, welfare monotonically increases as the fixed cost of using steamships decreases

Adoption of Steamships: Estimation

Are facts consistent with theory?

- The relative fixed cost of using steamships crucial for differences in gains
- Do colonized countries have a higher fixed cost of adoption $(f_{ii}^{steam}/f_{ii}^{sail})$?

Estimating adoption costs by port-pairs


Fixed cost using ports with both sailing and steamships

$$\mu_{ij} = \frac{\int_{\varphi_{steam=sail}}^{\infty} q_{ij}(\varphi) dG(\varphi)}{\int_{\varphi_{sail}}^{\infty} q_{ij}(\varphi) dG(\varphi)} = \frac{\tau_{ij}^{steam} / \tau_{ij}^{sail}}{1 - \left(\frac{f_{ij}^{steam} / f_{ij}^{sail} - 1}{(\tau_{ij}^{steam} / \tau_{ij}^{sail})^{1 - \sigma} - 1}\right)^{\frac{1}{1 - \sigma}}}$$

Fixed cost using ports that transitioned to full steamships

$$\log x_{ij,t+1} - \log x_{ij,t} = \alpha_i + \alpha_j - \theta_i \log \left(\tau_{ij}^{steam} / \tau_{ij}^{sail} \right) + \frac{\sigma - \theta_i}{\sigma - 1} \log \left(f_{ij}^{steam} / f_{ij}^{sail} \right)$$

Difference between colonized or not

More questions (Preliminary)

Close the model

- Port investment
- Institution

Introducing Port Investment

Decompose fix cost into rents for both ports: $f_{ij}^s = r_i^s r_j^s$

- Competitive market of landlords
 - firms pay the "marginal cost" of using the port
 - Port productivity depends on fundamental and past sailing ship usage $A^s_i = \bar{A}^s_i X^\lambda_{i,t-1}$
- Dynamic problem
 - invest in ports if the expected sum of profits is higher than not
 - endogenous rent seems difficult

Conclusion

Summary of work so far

- Digitized valuable historical shipping data
- Provided preliminary evidence on unequal benefits from steamships
- Incorporated shipping technology into a canonical trade model to illustrate biased technology upgrade

- Digitization of historical documents is an active field
- Evidence of transportation technology and its distributive effect is relatively unknown
- Standard trade model may provide insights into inequality and the effect of integration

comments, questions, advice, critiques etc. shotarobeppu.github.io shotarobeppu0811@gmail.com